Global generation of sheaves (Har II5)

Def:
$$F$$
 is generated by global sections, or globally
generated, if There is a set of global sections
 $\{\xi_{i}\} \in \Gamma(X, F)$

such that for each $x \in X$, the images of the s; in F_x generate the stalk as an O_x -module.

Note: If $S \in \Gamma(X, \mathcal{F})$ any section, we get a morphism of \mathcal{O}_X -modules

$$Q^{x} \rightarrow \mathcal{F}$$

By defining on each open set U

$$\mathcal{O}_{\mathbf{x}}(\mathbf{u}) \to \mathcal{F}(\mathbf{u})$$

 $\iota \longmapsto \mathsf{sl}_{\mathbf{u}}$

So if F is globally generated, we sum the morphisms for each s; and get

$$\bigoplus_{i} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{F}_{\mathsf{Y}}$$

which is surjective on stalks and thus surjective.

Conversely, given a surjective mop from a free sheaf, we get a set of sections of I that generate each stalk, so I is globally generated.

Ex: On
$$X = SpecA$$
, every quasi-coherent sheaf \overline{F} is
globally generated, since $\overline{F} = \widetilde{M}$, and $\widetilde{M}_p = M_p$.

Ex: If S is graded and $X = \operatorname{Proj} S$, $\Gamma(X, O(n)) = O$ for n < O, so O(n) is not globally generated in This case.

A theorem of serve says that if 7 is cohevent on "nice" projective schemes, a high enough twist will be globally generated. First we prove this in The case of projective space.

<u>lemma</u>: let X = P^r_A = ProjA(xo,..., xr), A Noetherian, F coherent. Then there's some no st. for h≥no, F(n) is globally generated by finitely many global sections.

<u>Pf</u>: First cover X w/ $D_+(x_i)$. Since \hat{F} is coherent, for each i, There's some f.g. module M_i over $B_i = A[\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}]$ s.t.

$$\mathcal{F}|_{D_{+}(\pi_{i})} = M_{i}$$

For each i, let {Sil, Siz,...} be a finite generating set for Mi.

By an earlier lemma (from last section), there's some n s.t. χ_i^* sign extends to a global section tig of f(n). (Here we're applying lemma to $f = O_x(i)$.) Take n >> 0 so That it works for all i.j.

F(n) corresponds to a module M'_i on $D_+(x_i)$, and the map

$$\frac{\cdot \chi_i}{f} \xrightarrow{\cdot \chi_i} \hat{f}(n)$$

induces an isomorphism $M_i \rightarrow M_i^c$, since it $m \mapsto x_i^c m$

corresponds to tensoring by a free module of rank l_{j} and χ_{i}^{*} is a unit.

Thus, The
$$\pi_i^h$$
 Sij generate M_i' so the tij generate $F(n)$ everywhere. \Box

If X is a projective scheme over A, then by the corollary in the last section, we can write $X = \operatorname{Proj} S$, where $S = A(x_0, \dots, x_r) + \sum_{i=1}^{r} \sum_{i=1}^{r}$

and So = A, so that I is contained in the irrelevant ideal.

Thus,
$$A(x_0, ..., x_r] \longrightarrow S$$
 induces a closed immersion
 $i: X = \operatorname{Proj} S \longrightarrow \operatorname{P}_A^r$.

So we have $f^*(O(i)) = O_X(i)$, so the lemma implies

Theorem (serre) The lemma holds for any projective scheme X over A Noetherian.

Pf: Since \mathcal{F} is coherent and i a closed immersion, for any open affine $U \subseteq \mathbb{P}_{A}^{r}$, $i^{-1}(u)$ is also an open affine, so $i_{*}\mathcal{F}(u)$ is finitely generated, so $i_{*}\mathcal{F}$ is coherent on \mathbb{P}_{A}^{r} .

Moreover, $i_*(f(n)) = i_* f \otimes O(n) = (i_* f)(n)$, by the projection formula $\stackrel{*}{\xrightarrow{}}$

Thus, $\mathcal{F}(n)$ is globally generated iff $f_*(\mathcal{F}(n))$ is (do you see why?) Thus, we are done by the lemma. \Box

* The projection formula says that if $f: X \rightarrow Y$, \mathcal{F} an \mathcal{O}_X -module and \mathcal{E} a locally free \mathcal{O}_Y -module, then $f_*(\mathcal{F} \otimes f^* \mathcal{E}) \cong f_* \mathcal{F} \otimes \mathcal{E}.$

(see Har Ex5.1cd -1 might not assign this, but you should

think about it regardless!)

This theorem easily implies a useful corollary:

Cor: let X be as in the Theorem, then any coherent
sheaf
$$\widehat{F}$$
 is a quotient of a finite direct sum
 $\bigoplus O(n)$, where $n \in \mathbb{Z}$.

Pf: We can find m s.t. $\mathcal{F}(m)$ is globally generated by finitely many global sections. Thus

$$\oplus \bigcirc_{\mathbf{x}} \longrightarrow \Im(\mathbf{m}).$$

Tensoring by $O_x(-m)$, we get a surjection $\bigoplus O_x(-m) \longrightarrow f$. \square

We can also use the theorem to prove an important result about global sections of coherent sheaves, but there is a much easier proof involving cohomology, so we will wait to prove it:

Thm: k a field, A a f.g. k-algebra, X a projective scheme over A, \mathcal{F} coherent. Then $\Gamma(X, \mathcal{F})$ is a finitely generated A module. In particular, if A = k, it's a finite-dimensional k-vector space. Now we can give a condition under which the puchforward of a coherent sheaf is coherent.

Cor:
$$f: X \rightarrow Y$$
 a projective morphism of schemes of finite type
over k. If \widehat{F} is cohevent on X, f_*X is cohevent on Y.

Since
$$\widehat{F}$$
 is quasi-coherent, $f_* \widehat{F}$ is at least quasi-coherent,
so $f_* \widehat{F} = \widehat{\Gamma(Y, f_* \widehat{F})} = \widehat{\Gamma(X, \widehat{F})}$

which is f.g. by the theorem, so 7 is coherent. D